Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 255
Filtrar
1.
Angew Chem Int Ed Engl ; : e202405333, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623864

RESUMO

Electrically conducting two-dimensional (2D) metal-organic frameworks (MOFs) have garnered significant interest due to their remarkable structural tunability and outstanding electrical properties. However, the design and synthesis of high-performance materials face challenges due to the limited availability of specific ligands and pore structures. In this study, we have employed a novel highly branched D3h symmetrical planar conjugated ligand, dodechydroxylhexabenzotrinaphthylene (DHHBTN) to fabricate a series of 2D conductive MOFs, named M-DHHBTN (M = Co, Ni, and Cu). This new family of MOFs offers two distinct types of pores, elevating the structural complexity of 2D conductive MOFs to a more advanced level. The intricate tessellation patterns of the M-DHHBTN are elucidated through comprehensive analyses involving powder X-ray diffraction, theoretical simulations, and high-resolution transmission electron microscope. Optical-pump terahertz-probe spectroscopic measurements unveiled carrier mobility in DHHBTN-based 2D MOFs spanning from 0.69 to 3.10 cm2 V-1 s-1. Among M-DHHBTN famility, Cu-DHHBTN displayed high electrical conductivity reaching 0.21 S cm-1 at 298 K with thermal activation behavior. This work leverages the "branched conjugation" of the ligand to encode heteroporosity into highly conductive 2D MOFs, underscoring the significant potential of heterogeneous double-pore structures for future applications.

2.
Medicine (Baltimore) ; 103(16): e37874, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640304

RESUMO

RATIONALE: X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene leading to very long chain fatty acid (VLCFA) accumulation. The disease demonstrates a spectrum of phenotypes including adrenomyeloneuropathy (AMN). We aimed to identify the genetic basis of disease in a patient presenting with AMN features in order to confirm the diagnosis, expand genetic knowledge of ABCD1 mutations, and elucidate potential genotype-phenotype associations to inform management. PATIENT CONCERNS: A 29-year-old male presented with a 4-year history of progressive spastic paraplegia, weakness of lower limbs, fecal incontinence, sexual dysfunction, hyperreflexia, and positive Babinski and Chaddock signs. DIAGNOSES: Neuroimaging revealed brain white matter changes and spinal cord thinning. Significantly elevated levels of hexacosanoic acid (C26:0) and tetracosanoic acid (C24:0) suggested very long chain fatty acids (VLCFA) metabolism disruption. Genetic testing identified a novel hemizygous ABCD1 mutation c.249dupC (p.F83fs). These findings confirmed a diagnosis of X-linked ALD with an AMN phenotype. INTERVENTIONS: The patient received dietary counseling to limit VLCFA intake. Monitoring for adrenal insufficiency and consideration of Lorenzo's oil were advised. Genetic counseling and testing were offered to at-risk relatives. OUTCOMES: At present, the patient continues to experience progressive paraplegia. Adrenal function remains normal thus far without steroid replacement. Family members have undergone predictive testing. LESSONS: This case expands the known mutation spectrum of ABCD1-linked X-ALD, providing insight into potential genotype-phenotype correlations. A thoughtful diagnostic approach integrating clinical, biochemical and genetic data facilitated diagnosis. Findings enabled genetic counseling for at-risk relatives regarding this X-linked disorder.


Assuntos
Insuficiência Adrenal , Adrenoleucodistrofia , Masculino , Humanos , Adulto , Adrenoleucodistrofia/diagnóstico , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Fenótipo , Paraplegia , Mutação , Ácidos Graxos não Esterificados , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética
3.
Heliyon ; 10(8): e29102, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644862

RESUMO

Background: Non-small cell lung cancer (NSCLC) shows the highest morbidity among malignant tumors worldwide. Despite improvements of diagnosis and treatment, patient prognosis remains unfavorable. Therefore, there is a need to discover a novel treatment strategy for NSCLC. DUSP14 is related to various cancers as the regulatory factor for cellular processes. However, its specific roles in NSCLC and the upstream modulator remain largely unclear. Methods: DUSP14 expression patterns within the lung cancer patient cohort from TCGA database were analyzed using UALCAN online tool. Different databases including miRDB, starbase, and Targetscan were employed to screen the upstream regulator of DUSP14. DUSP14 and miR-199a-5p expression was determined by qRT-PCR and Western blot techniques. To confirm binding interaction of DUSP14 with miR-199a-5p, we conducted a dual-luciferase reporter assay. Cell viability, migration, and stemness properties were assessed using CCK-8, EdU (5-ethynyl-2'-deoxyuridine) incorporation, transwell invasion, and sphere formation assays. The effect of DUSP14 silencing on tumorigenesis was assessed with the NSCLC cell xenograft mouse model. Results: Our study discovered that DUSP14 exhibited high expression within NSCLC tumor samples, which is related to the dismal prognostic outcome in NSCLC patients. Silencing DUSP14 impaired NSCLC cell proliferation, migration, and tumor sphere formation. Besides, we identified miR-199a-5p as the upstream regulatory factor for DUSP14, and its expression was negatively related to DUSP14 level within NSCLC tissues. Introducing miR-199a-5p recapitulated the function of DUSP14 silencing in NSCLC cell aggressiveness and stemness. Moreover, knocking down DUSP14 efficiently inhibited tumor formation in NSCLC cells of the xenograft model. Conclusions: Our study suggests that DUSP14 is negatively regulated by miR-199a-5p within NSCLC, whose overexpression is required for sustaining NSCLC cell proliferation, invasion and stemness.

4.
Bioorg Chem ; 146: 107285, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547721

RESUMO

Cyclin-dependent kinases (CDKs) are critical cell cycle regulators that are often overexpressed in tumors, making them promising targets for anti-cancer therapies. Despite substantial advancements in optimizing the selectivity and drug-like properties of CDK inhibitors, safety of multi-target inhibitors remains a significant challenge. Macrocyclization is a promising drug discovery strategy to improve the pharmacological properties of existing compounds. Here we report the development of a macrocyclization platform that enabled the highly efficient discovery of a novel, macrocyclic CDK2/4/6 inhibitor from an acyclic precursor (NUV422). Using dihedral angle scan and structure-based, computer-aided drug design to select an optimal ring-closing site and linker length for the macrocycle, we identified compound 8 as a potent new CDK2/4/6 inhibitor with optimized cellular potency and safety profile compared to NUV422. Our platform leverages both experimentally-solved as well as generative chemistry-derived macrocyclic structures and can be deployed to streamline the design of macrocyclic new drugs from acyclic starting compounds, yielding macrocyclic compounds with enhanced potency and improved drug-like properties.


Assuntos
Quinases Ciclina-Dependentes , Inibidores de Proteínas Quinases , Relação Estrutura-Atividade , Quinase 2 Dependente de Ciclina/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Desenho de Fármacos , Descoberta de Drogas
5.
J Dairy Sci ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38522831

RESUMO

The colonization and development of the gut microbiome in dairy calves play a crucial role in their overall health and future productivity. Despite the widely proposed benefits of inulin-related products on the host, there is insufficient information about how supplementing fructo-oligosaccharides (FOS) impacts the colonization and development of the gut microbiome in calves. In a randomized intervention trial involving newborn male Holstein dairy calves, we investigated the impact of FOS on the calf hindgut microbiome, short-chain fatty acids, growth performance, and the incidence of diarrhea. The daily administration of FOS exhibited a time-dependent increase in the average daily gain and the concentration of short-chain fatty acids. Concurrently, FOS delayed the natural decline of Bifidobacterium, promoting the maturation and stabilization of the hindgut microbiome. These findings not only contribute to a theoretical understanding of the judicious application of prebiotics but also hold significant practical implications for the design of early life dietary interventions in the rearing of dairy calves.

6.
Int J Biol Macromol ; 265(Pt 1): 130921, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492688

RESUMO

The design of small molecule inhibitors that target the programmed death ligand-1 (PD-L1) is a forefront issue in immune checkpoint blocking therapy. Small-molecule inhibitors have been shown to exert therapeutic effects by inducing dimerization of the PD-L1 protein, however, the specific mechanisms underlying this dimerization process remain largely unexplored. Furthermore, there is a notable lack of comparative studies examining the binding modes of structurally diverse inhibitors. In view of the research gaps, this work employed molecular dynamics simulations to meticulously examine the interactions between two distinct types of inhibitors and PD-L1 in both monomeric and dimeric forms, and predicted the dimerization mechanism. The results revealed that inhibitors initially bind to a PD-L1 monomer, subsequently attracting another monomer to form a dimer. Notably, symmetric inhibitors observed superior binding efficiency compared to other inhibitors. Key residues, including Ile54, Tyr56, Met115 and Tyr123 played a leading role in binding. Structurally, symmetric inhibitors were capable of thoroughly engaging the binding pocket, promoting a more symmetrical formation of PD-L1 dimers. Furthermore, symmetric inhibitors formed more extensive hydrophobic interactions with protein residues. The insights garnered from this research are expected to significantly contribute to the rational design and optimization of small molecule inhibitors targeting PD-L1.


Assuntos
Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Dimerização , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Bibliotecas de Moléculas Pequenas/química , Simulação de Dinâmica Molecular
7.
Bioorg Med Chem ; 103: 117662, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38493730

RESUMO

Inhibition of the low fidelity DNA polymerase Theta (Polθ) is emerging as an attractive, synthetic-lethal antitumor strategy in BRCA-deficient tumors. Here we report the AI-enabled development of 3-hydroxymethyl-azetidine derivatives as a novel class of Polθ inhibitors featuring central scaffolding rings. Structure-based drug design first identified A7 as a lead compound, which was further optimized to the more potent derivative B3 and the metabolically stable deuterated compound C1. C1 exhibited significant antiproliferative properties in DNA repair-compromised cells and demonstrated favorable pharmacokinetics, showcasing that 3-hydroxymethyl-azetidine is an effective bio-isostere of pyrrolidin-3-ol and emphasizing the potential of AI in medicinal chemistry for precise molecular modifications.


Assuntos
Azetidinas , Neoplasias , Humanos , Reparo do DNA , Azetidinas/química
8.
J Neurotrauma ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38326935

RESUMO

Hemorrhagic progression of contusion (HPC) often occurs early in cerebral contusions (CC) patients, significantly impacting their prognosis. It is vital to promptly assess HPC and predict outcomes for effective tailored interventions, thereby enhancing prognosis in CC patients. We utilized the Attention-3DUNet neural network to semi-automatically segment hematomas from computed tomography (CT) images of 452 CC patients, incorporating 695 hematomas. Subsequently, 1502 radiomic features were extracted from 358 hematomas in 261 patients. After a selection process, these features were used to calculate the radiomic signature (Radscore). The Radscore, along with clinical features such as medical history, physical examinations, laboratory results, and radiological findings, was employed to develop predictive models. For prognosis (discharge Glasgow Outcome Scale score), radiomic features of each hematoma were augmented and fused for correlation. We employed various machine learning methodologies to create both a combined model, integrating radiomics and clinical features, and a clinical-only model. Nomograms based on logistic regression were constructed to visually represent the predictive procedure, and external validation was performed on 170 patients from three additional centers. The results showed that for HPC, the combined model, incorporating hemoglobin levels, Rotterdam CT score of 3, multi-hematoma fuzzy sign, concurrent subdural hemorrhage, international normalized ratio, and Radscore, achieved area under the receiver operating characteristic curve (AUC) values of 0.848 and 0.836 in the test and external validation cohorts, respectively. The clinical model predicting prognosis, utilizing age, Abbreviated Injury Scale for the head, Glasgow Coma Scale Motor component, Glasgow Coma Scale Verbal component, albumin, and Radscore, attained AUC values of 0.846 and 0.803 in the test and external validation cohorts, respectively. Selected radiomic features indicated that irregularly shaped and highly heterogeneous hematomas increased the likelihood of HPC, while larger weighted axial lengths and lower densities of hematomas were associated with a higher risk of poor prognosis. Predictive models that combine radiomic and clinical features exhibit robust performance in forecasting HPC and the risk of poor prognosis in CC patients. Radiomic features complement clinical features in predicting HPC, although their ability to enhance the predictive accuracy of the clinical model for adverse prognosis is limited.

9.
Sci Total Environ ; 918: 170821, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38336077

RESUMO

There are various types of bacteria inhabiting the intestine that help maintain the balance of the intestinal microbiota. Lactobacillus is one of the important beneficial bacteria and is widely used as a food starter and probiotic. In this study, we investigated the daily fluctuation of the colonic Lactobacillus species and their distribution of antibiotic resistance genes (ARGs) as well as antibiotic susceptibility in pigs. Metagenomic analysis revealed that genus Lactobacillus was one of the most dominant genera in the colon of growing pigs. Rhythmicity analysis revealed that 84 out of 285 Lactobacillus species exhibited rhythmic patterns. Lactobacillus johnsonii and Lactobacillus reuteri were the two most abundant lactobacilli with circadian oscillation, which increased during the day and decreased at night. The profile of the antibiotic resistome was modified over time within 24-h period. Elfamycin resistance genes were the most enriched class found in Lactobacillus. Furthermore, the seven strains of Lactobacillus isolated from the pig intestine mainly exhibited resistance to gentamicin, erythromycin, and lincomycin. The whole genome annotation of four Lactobacillus strains indicated the presence of multiple ARGs, including elfamycin resistance genes, however, the most abundant ARG was optrA in genome of four strains. These results indicate the presence of various Lactobacillus species harboring a large number of ARGs in the swine intestine. This implies that when using animal-derived lactobacilli, it is essential to assess antibiotic resistance to prevent further transmission between animals and the environment.


Assuntos
Antibacterianos , Lactobacillus , Animais , Suínos , Antibacterianos/farmacologia , Lactobacillus/genética , Resistência Microbiana a Medicamentos/genética , Eritromicina , Bactérias/genética , Colo , Genes Bacterianos
10.
Food Microbiol ; 119: 104443, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225048

RESUMO

The present study developed a model for effectively assessing the risk of spoilage caused by Aspergillus niger to identify key control measures employed in bakery supply chains. A white bread supply chain comprising a processing plant and two retail stores in Taiwan was selected in this study. Time-temperature profiles were collected at each processing step in summer and winter. Visual mycelium diameter predictions were validated using a time-lapse camera. Six what-if scenarios were proposed. The mean risk of A. niger contamination per package sold by retailer A was 0.052 in summer and 0.036 in winter, and that for retailer B was 0.037 in summer and 0.022 in winter. Sensitivity analysis revealed that retail storage time, retail temperature, and mold prevalence during factory cooling were the main influencing factors. The what-if scenarios revealed that reducing the retail environmental temperature by 1 °C in summer (from 23.97 °C to 22.97 °C) and winter (from 23.28 °C to 22.28 °C) resulted in a reduction in spoilage risk of 47.0% and 34.7%, respectively. These results indicate that food companies should establish a quantitative microbial risk assessment model that uses real data to evaluate microbial spoilage in food products that can support decision-making processes.


Assuntos
Aspergillus niger , Aspergillus , Pão , Temperatura , Microbiologia de Alimentos , Medição de Risco
11.
Angew Chem Int Ed Engl ; 63(3): e202313591, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38011010

RESUMO

Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) are emerging as a unique subclass of layer-stacked crystalline coordination polymers that simultaneously possess porous and conductive properties, and have broad application potential in energy and electronic devices. However, to make the best use of the intrinsic electronic properties and structural features of 2D c-MOFs, the controlled synthesis of hierarchically nanostructured 2D c-MOFs with high crystallinity and customized morphologies is essential, which remains a great challenge. Herein, we present a template strategy to synthesize a library of 2D c-MOFs with controlled morphologies and dimensions via insulating MOFs-to-c-MOFs transformations. The resultant hierarchically nanostructured 2D c-MOFs feature intrinsic electrical conductivity and higher surface areas than the reported bulk-type 2D c-MOFs, which are beneficial for improved access to active sites and enhanced mass transport. As proof-of-concept applications, the hierarchically nanostructured 2D c-MOFs exhibit a superior performance for electrical properties related applications (hollow Cu-BHT nanocubes-based supercapacitor and Cu-HHB nanoflowers-based chemiresistive gas sensor), achieving over 225 % and 250 % improvement in specific capacity and response intensity over the corresponding bulk type c-MOFs, respectively.

12.
Laryngoscope ; 134(3): 1107-1117, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37594194

RESUMO

OBJECTIVE: Secreted phospholipase A2 Group IB (sPLA2GIB) regulates the release of arachidonic acid, prostaglandins, and other inflammatory lipid mediators. Although it has been well involved in extensive inflammatory diseases, its specific mechanism in chronic rhinosinusitis with nasal polyps (CRSwNP) remains unclear. In this study, we investigated the role of sPLA2GIB in the pathophysiology of CRSwNP. METHODS: Quantitative PCR, immunofluorescence staining, western blotting, and enzyme-linked immunosorbent assay (ELISA) were used to analyze the expression of sPLA2s, phospholipase A2 receptor (PLA2R), and prostaglandin D2 (PGD2) in nasal samples. Human nasal epithelial cells (HNECs) were cultured at an air-liquid interface (ALI) and stimulated with various cytokines. The human mast cell line HMC-1 was stimulated with sPLA2GIB, and the expression of PGD2 and cytokines in the culture supernatant was detected by ELISA. RESULTS: The mRNA and protein levels of sPLA2GIB were significantly higher in eosinophilic CRSwNP than in control tissues. sPLA2GIB was predominantly expressed in the nasal epithelial cells. PLA2R mRNA and protein levels were upregulated in both eosinophilic and non-eosinophilic CRSwNP compared with the control groups. IL-4, IL-13, TNF-α, and IL-1ß upregulated the expression of sPLA2GIB in ALI-cultured HNECs. sPLA2GIB induced PGD2 and IL-13 production in HMC-1 cells in a hydrolytic activity-independent manner. PGD2 protein expression was elevated in tissue homogenates of eosinophilic CRSwNP, and PGD2 upregulated the expression of IL-13 in HMC-1 cells. CONCLUSION: Increased secretion of sPLA2GIB by epithelial cells may promote eosinophilic inflammation in CRSwNP by enhancing PGD2 and IL-13 production in mast cells via binding to PLA2R. LEVEL OF EVIDENCE: N/A Laryngoscope, 134:1107-1117, 2024.


Assuntos
Pólipos Nasais , Rinite , Sinusite , Humanos , Pólipos Nasais/complicações , Prostaglandina D2 , Interleucina-13 , Rinite/complicações , Rinite/genética , Sinusite/complicações , Sinusite/genética , Citocinas/metabolismo , RNA Mensageiro/metabolismo , Doença Crônica
13.
mSystems ; 9(1): e0081023, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38085089

RESUMO

A high-grain (HG) diet can rapidly lower the rumen pH and thus modify the gastrointestinal microbiome in dairy cattle. Although the prevalence of antibiotic resistance is strongly linked with the gut microbiome, the influences of HG diet on animals' gut resistome remain largely unexplored. Here, we examined the impact and mechanism of an HG diet on the fecal resistome in dairy cattle by metagenomically characterizing the gut microbiome. Eight lactating Holstein cattle were randomly allocated into two groups and fed either a conventional (CON) or HG diet for 3 weeks. The fecal microbiome and resistome were significantly altered in dairy cattle from HG, demonstrating an adaptive response that peaks at day 14 after the dietary transition. Importantly, we determined that feeding an HG diet specifically elevated the prevalence of resistance to aminoglycosides (0.11 vs 0.24 RPKG, P < 0.05). This diet-induced resistance increase is interrelated with the disproportional propagation of microbes in Lachnospiraceae, indicating a potential reservoir of aminoglycosides resistance. We further showed that the prevalence of acquired resistance genes was also modified by introducing a different diet, likely due to the augmented frequency of lateral gene transfer (LGT) in microbes (CON vs HG: 254 vs 287 taxa) such as Lachnospiraceae. Consequently, we present that diet transition is associated with fecal resistome modification in dairy cattle and an HG diet specifically enriched aminoglycosides resistance that is likely by stimulating microbial LGT.IMPORTANCEThe increasing prevalence of antimicrobial resistance is one of the most severe threats to public health, and developing novel mitigation strategies deserves our top priority. High-grain (HG) diet is commonly applied in dairy cattle to enhance animals' performance to produce more high-quality milk. We present that despite such benefits, the application of an HG diet is correlated with an elevated prevalence of resistance to aminoglycosides, and this is a combined effect of the expansion of antibiotic-resistant bacteria and increased frequency of lateral gene transfer in the fecal microbiome of dairy cattle. Our results provided new knowledge in a typically ignored area by showing an unexpected enrichment of antibiotic resistance under an HG diet. Importantly, our findings laid the foundation for designing potential dietary intervention strategies to lower the prevalence of antibiotic resistance in dairy production.


Assuntos
Aminoglicosídeos , Lactação , Animais , Bovinos , Feminino , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Dieta/veterinária , Genes Microbianos
14.
Nanomaterials (Basel) ; 13(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38063752

RESUMO

Although the synthesis of molybdenum disulfide (MoS2) on sapphire has made a lot of progress, how the substrate surface affects the growth still needs to be further studied. Herein, the impact of the sapphire step height on the growth of monolayer MoS2 through chemical vapor deposition (CVD) is studied. The results show that MoS2 exhibits a highly oriented triangular grain on a low-step (0.44-1.54 nm) substrate but nanoribbons with a consistent orientation on a high-step (1.98-3.30 nm) substrate. Triangular grains exhibit cross-step growth, with one edge parallel to the step edge, while nanoribbons do not cross steps and possess the same orientation as the step. Scanning electron microscopy (SEM) reveals that nanoribbons are formed by splicing multiple grains, and the consistency of the orientation of these grains is demonstrated with a transmission electron microscope (TEM) and second-harmonic generation (SHG). Furthermore, our CP2K calculations, conducted using the generalized gradient approximation and the Perdew-Burke-Ernzerhof (PBE) functional with D3 (BJ) correction, show that MoS2 domains prefer to nucleate at higher steps, while climbing across a higher step is more difficult. This work not only sheds light on the growth mechanism of monolayer MoS2 but also promotes its applications in electrical, optical, and energy-related devices.

15.
Plant Dis ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37933146

RESUMO

Blue honeysuckle is emerging as a popular edible fruit and folk medicine. However, from June to August 2021, a serious leaf-spot disease affected the yield and quality of blue honeysuckle in Harbin, Heilongjiang Province, China; the species and characteristics of the pathogens responsible for the disease are unknown. In this study, 30 fungal isolates were obtained from infected blue honeysuckle leaves, identified as Alternaria tenuissima based on morphological and molecular characteristics and phylogenetic analyses. To the best of our knowledge, this is one of the first studies to identify A. tenuissima as the causal agent of blue honeysuckle leaf spots in China. Pathogenicity tests of the isolates revealed that most isolates exhibited moderately pathogenic. All blue honeysuckle cultivars tested were found to be susceptible to 30 A. tenuissima isolates. In addition, elder, Dahurian rose fruit, sea-buckthorn, rowan, hawthorn, bird cherry, and sorb could be infected by A. tenuissima isolates, while European cranberry bush and nanking cherry were not infected. A. tenuissima isolates were highly sensitive to prochloraz (EC50 ≤ 0.50 µg·ml-1) with 86.21% efficacy at 400 µg·ml-1 in the field trials. Therefore, the application of rotation and chemical fungicides are considered to control the disease-causing leaf spots in blue honeysuckle. These results provide a basis for controlling A. tenuissima in blue honeysuckle in China.

17.
Molecules ; 28(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37687031

RESUMO

Obesity, diabetes, and cardiovascular diseases are the major chronic metabolic diseases that threaten human health. In order to combat these epidemics, there remains a desperate need for effective, safe, and easily available therapeutic strategies. Recently, the development of natural product research has provided new methods and options for these diseases. Numerous studies have demonstrated that microRNAs (miRNAs) are key regulators of metabolic diseases, and natural products can improve lipid and glucose metabolism disorders and cardiovascular diseases by regulating the expression of miRNAs. In this review, we present the recent advances involving the associations between miRNAs and natural products and the current evidence showing the positive effects of miRNAs for natural product treatment in metabolic diseases. We also encourage further research to address the relationship between miRNAs and natural products under physiological and pathological conditions, thus leading to stronger support for drug development from natural products in the future.


Assuntos
Produtos Biológicos , Doenças Cardiovasculares , Doenças Metabólicas , MicroRNAs , Humanos , Doenças Metabólicas/tratamento farmacológico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Desenvolvimento de Medicamentos , MicroRNAs/genética
18.
RSC Adv ; 13(39): 27077-27087, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37701279

RESUMO

Nowadays oil pollution poses a serious threat to the environment and people's daily life. As reusable and environmentally friendly materials, fiber-based oil sorption materials can effectively alleviate this phenomenon. However, maintaining a high sorption rate along with improved mechanical properties remains a challenge for oil sorption materials. Herein, we report a novel hollow PET/kapok/hollow PET nonwoven with high porosity and oil retention, outstanding cyclic oil sorption rate and improved mechanical performance using kapok as the oil preserver and hollow PET as the conductor and structure enhancer. Benefiting from the three-layer composite structure fabricated by carding and needle punching reinforcement, the resulting oil sorption materials, with kapok proportion more than or equal to 60%, exhibited high oil sorption rate and oil sorption speed. The materials of 20HP/60K/20HP component content present a high initial oil sorption rate of 28.22 g g-1, a maximum oil sorption rate of 31.17 g g-1 and a sorption rate constant of the Quasi second-order kinetic equation of 0.067 in plant oil. On the other hand, when the proportion of kapok fiber in the material was below 60%, due to the introduction of hollow PET, the mechanical properties were significantly boosted, and its oil retention and reusability were distinguished, with a reuse rate stabilizing at a relatively high level (>93%) in plant oil after undergoing three oil sorption cycles. The successful fabrication of hollow PET/kapok/hollow PET nonwovens could provide a new approach for the design and development of oil sorption materials.

19.
Adv Mater ; 35(41): e2305575, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37608530

RESUMO

Ammonium ions (NH4 + ) are emerging non-metallic charge carriers for advanced electrochemical energy storage devices, due to their low cost, elemental abundance, and environmental benignity. However, finding suitable electrode materials to achieve rapid diffusion kinetics for NH4 + storage remains a great challenge. Herein, a 2D conjugated metal-organic framework (2D c-MOF) for immobilizing iodine, as a high-performance cathode material for NH4 + hybrid supercapacitors, is reported. Cu-HHB (HHB = hexahydroxybenzene) MOF embedded with iodine (Cu-HHB/I2 ) features excellent electrical conductivity, highly porous structure, and rich accessible active sites of copper-bis(dihydroxy) (Cu─O4 ) and iodide species, resulting in a remarkable areal capacitance of 111.7 mF cm-2 at 0.4 mA cm-2 . Experimental results and theoretical calculations indicate that the Cu─O4 species in Cu-HHB play a critical role in binding polyiodide and suppressing its dissolution, as well as contributing to a large pseudocapacitance with adsorbed iodide. In combination with a porous MXene anode, the full NH4 + hybrid supercapacitors deliver an excellent energy density of 31.5 mWh cm-2 and long-term cycling stability with 89.5% capacitance retention after 10 000 cycles, superior to those of the state-of-the-art NH4 + hybrid supercapacitors. This study sheds light on the material design for NH4 + storage, enabling the development of novel high-performance energy storage devices.

20.
PLoS One ; 18(7): e0286069, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37399206

RESUMO

Identifying plant, fungal, and animal ingredients in a specific mixture remains challenging during the limitation of PCR amplification and low specificity of traditional methods. Genomic DNA was extracted from mock and pharmaceutical samples. Four type of DNA barcodes were generated from shotgun sequencing dataset with the help of a local bioinformatic pipeline. Taxa of each barcode was assigned by blast to TCM-BOL, BOLD, and GenBank. Traditional methods including microscopy, thin layer chromatography (TLC), and high-performance liquid chromatography (HPLC) were carried out according to Chinese pharmacopoeia. On average, 6.8 Gb shotgun reads were sequenced from genomic DNA of each sample. Then, 97, 11, 10, 14, and one operational taxonomic unit (OTU) were generated for ITS2, psbA-trnH, rbcL, matK, and COI, respectively. All the labeled ingredients including eight plant, one fungal, and one animal species were successfully detected in both the mock and pharmaceutical samples, in which Chebulae Fructus, Poria, and Fritilariae Thunbergia Bulbus were identified via mapping reads to organelle genomes. In addition, four unlabeled plant species were detected from pharmaceutical samples, while 30 genera of fungi, such as Schwanniomyces, Diaporthe, Fusarium were detected from mock and pharmaceutical samples. Furthermore, the microscopic, TLC, and HPLC analysis were all in accordance with the standards stipulated by Chinese Pharmacopoeia. This study indicated that shotgun metabarcoding could simultaneously identified plant, fungal, and animal ingredients in herbal products, which has the ability to serve as a valuable complement to traditional methods.


Assuntos
Código de Barras de DNA Taxonômico , Plantas , Animais , Código de Barras de DNA Taxonômico/métodos , DNA de Plantas/genética , Plantas/genética , Extratos Vegetais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...